A new methodology for decontamination of dental instruments by an ultrasonic cleaner based on Sweep System Technology

P. DI GENNARO¹, G. BESTETTI¹*, A. RADAELLI², M. PAGANINI³, C. DE GIULI MORGHEN³, M. NERI³

¹Department of Environmental Sciences, University of Milano-Bicocca, 20126 Milano; ²Department of Pharmacological Sciences; ³Department of Medical Pharmacology, University of Milan, 20129 Milano, Italy

Received 20 January 2004 / Accepted 25 February 2004

Abstract - The efficiency of a decontamination procedure by sonication for different dental instruments after experimental microbial and viral contamination was tested. Both germicidal and virucidal activity of sonication in the presence or absence of a cationic biguanid disinfectant was assessed following three different disinfection/sterilisation protocols. Dental instruments were contaminated with a mixed culture of Enterococcus faecium, Staphylococcus sp., Pseudomonas aeruginosa, Mycobacterium sp., Escherichia coli and Bacillus subtilis, or with Poliovirus type 1 and Herpesvirus simplex type 1 (HHV-1), exposed to ultrasonic treatment in an ultrasonic bath and the surviving microorganisms titered. The results showed that an effective disinfection of dental instruments, expressed by an equal or higher than 4 logs microbial and viral reduction, can be obtained after 15 min or 10 min sonication in an ultrasonic cleaner equipped with a Sweep System Technology. Conversely, by the combined action of chemical disinfection and ultrasonic treatment in the same device, a sterilising effect was obtained after only 5 min for microbial and 10-15 min for virally contaminated instruments. The synergistic effect of chemical and physical means, as already accepted as an effective cleaning procedure of medical instruments, can therefore be applied to obtain a safe and effective sterilisation of dental instruments potentially contaminated by organic fluids and dental material harbouring pathogenic microbes and viruses.

Key words: disinfection, sterilisation, ultrasounds, dental instruments, ultrasonic cleaner.

INTRODUCTION

The control of the transmission of infectious agents in practical medicine as well as in the practice of dentistry has become a very critical issue since the early 1980s, when Human Immunodeficiency Virus (HIV), Creutzfeldt-Jacob disease-variant (vCJD) and Human Hepatitis C Virus (HCV) were found to be

* Corresponding Author. Phone: +39 02 644 82925; Fax: +39 02 644 82996; E-mail: Giuseppina.Bestetti@unimib.it

233
transmitted by medical devices contaminated with human material (Will and Matthews, 1982; Smith et al., 2002). Since all patients can represent a potential source of infection (Ingrosso et al., 1999), it is necessary to adopt an appropriate protocol for the decontamination, cleaning and sterilisation of instruments used for each patient (Burkhart and Crawford, 1997). In particular, the treatment of dental instruments to be reused must follow a standardised protocol that provides subsequent steps of decontamination, cleaning and sterilisation. The decontamination procedure is mandatory when instruments are used in patients who have a case history of serious infectious diseases such as viral hepatitis, AIDS (Lewis and Arens, 1995) and tuberculosis. After decontamination, the cleaning of the instruments is also an obligatory step, because, if not performed correctly, it may compromise the final process of sterilisation (Stach et al., 1995). Indeed, the removal of organic material before sterilisation is essential (Burkhart and Crawford, 1997), since the presence of organic debris can protect the microorganisms from inactivation. The last step is the sterilisation or disinfection that depends on the nature and utilisation of the instruments. It is therefore important to consider that the incorrect execution of even a single phase of the process can influence the final result (Sanchez and MacDonald, 1995).

Depending on their utilisation, it is important to evaluate the risk of transmission of infectious material by non-disposable recycled dental devices that have been used on patients and managed by auxiliary personnel but not adequately pre-decontaminated, disinfected or sterilised. The cleaning of instruments is therefore essential to make disinfection and sterilisation procedures effective, and to protect auxiliary personnel from potential cross-infections. A wide variety of chemicals were used, alone or in combination (Angelillo et al., 1998; Jatzwauk et al., 2001) with other physical methods like ultrasounds (Weller et al., 1980; Watmough, 1994; Cafruny et al., 1995; Bettner et al., 1998; Walmsley, 1998; Filho et al., 2001) to clean instruments and equipment, but their appropriate use was never defined (Miller et al., 1993, 2000). Recently, a new ultrasonic apparatus (SONICA® ultrasonic cleaner), equipped with a system of modulation frequency ranging between 43 and 45 kHz delivered by two separate transducers, was developed and commercialised by Soltec®, with the aim to improve the process of decontamination/sterilisation of medical and dental devices. The aim of this study was to evaluate the efficacy of a new method based on the combined effect of chemical and ultrasound treatment for disinfection of dental instruments experimentally contaminated by human pathogenic bacteria and viruses.

MATERIALS AND METHODS

The ultrasonic apparatus. The ultrasonic bath cleaner was the SONICA 2200EP Sweep System, an ultrasonic device developed and commercialised by Soltec® company (Milano, Italy) to clean and disinfect/sterilise medical and dental instruments by the combined use of a chemical disinfectant and ultrasounds. The ultrasonic waves are delivered from the bottom of the unit with a frequency of 43-45 kHz by two separate transducers delivering a total of 130
Watts. To improve the disinfection’s procedure the apparatus can also warm up
the cleaning solution by a resistance of 305 Watts fitted under the bottom panel.

The SONICA® CL 4% is a cleaning/disinfectant solution with a pH of 6.5-
7.5 composed of 15% cetrimide, 1.5% chlorexidine gluconate, 6% isopropyl
alcohol, and 0.1% E110 in water. As specified by the manufacturer, the solution
was utilised at 2% in sterile distilled water warmed up to 40 °C in the SONICA
2200EP Sweep System ultrasonic device.

Bacterial strains and growth conditions. Enterococcus faecium, Staphylo-
coccus sp., Pseudomonas aeruginosa, Mycobacterium sp., Escherichia coli
and Bacillus subtilis strains were utilised to perform the bacterial contamination
of the instruments. These strains were grown overnight at 30 °C in Luria-Bert-
ni (LB) medium. As Mycobacterium sp. growth was slow, this strain was grown
in LB medium added with glucose 0.2% and incubated until the cultural optical
density reached the same value as the cultures of other bacteria. Bacillus sub-
tilis was used to provide cultures with a high percentage of spores.

Viral strains and cell cultures. The attenuated Poliovirus type 1 (Sabin vacci-
ne strain) and the clinical isolate of Human Herpes simplex virus type 1 (HHV-
1) we used are a RNA non-enveloped and a DNA-enveloped human viruses
respectively. They are characterised by a high replicative activity in a broad
range of human and animal cells. These viruses are the prototype viruses gene-
 rally used in antiviral tests for their relative resistance to common disinfectants.
Both viruses were grown on confluent mycoplasma-free green monkey kidney
cells (VERO), plaque purified and titred on the same cells.

Dental instruments contamination. Sets of dental instruments (dental pincers
and tongs) were contaminated with: 1) a mixed bacterial culture containing at
the same ratio Enterococcus faecium, Staphylococcus sp., Pseudomonas aeru-
ginosa, Mycobacterium sp., and Escherichia coli; 2) the endospore-forming
Bacillus subtilis; 3) the RNA-virus Polio1; 4) the DNA-virus HHV-1.

The dental instruments were immersed at room temperature in the bacterial
suspensions, 10⁸ Colony Forming Units (CFU)/ml in LB medium, for 1 h or in
the viral suspensions only for 5 min to minimise the spontaneous viral inactiva-
tion.

For viral contamination, 10 ml of Dulbecco Modified Essential Medium
(DMEM), supplemented with 10% newborn calf serum (CS) to mimic the pro-
tein content of biological material, was inoculated with 10⁸ Plaque Forming
Units (10⁸ PFU/ml) of Poliovirus1 or 10¹⁰ PFU (10⁹ PFU/ml) of HHV-1.

The dental instruments were then drained away for 15 s and then utilised
for three different cleaning/disinfection procedures called Protocol A, B, and C.

Protocol A - Chemical decontamination without ultrasonic treatment. The
contaminated instruments were placed into the decontamination tank contain-
ing 1000 ml of 2%-diluted SONICA® CL 4% disinfectant, with an initial number
of 10⁶ CFU/ml mixed bacterial cells or Bacillus subtilis, or 4.25 x 10⁵ PFU/ml
Poliovirus1, or 2.2 x 10⁶ PFU/ml HHV-1. The treatment was maintained for 30
min at 40 °C without sonication. Samples were collected at 0, 5, 15, 30 min and
their residual bacterial or viral population determined.

Protocol B - Ultrasonic treatment. In order to evaluate the effect of sonication on the bacterial and viral population in the absence of a preliminary disinfection procedure, the contaminated instruments were placed into 1000 ml of 10 mM Phosphate Buffered Saline (PBS) in the ultrasonic bath set at 40 °C. The treatment was maintained for 30 min. Samples were collected and analysed at 0, 5, 15, 30 min.

Protocol C - Chemical decontamination combined with ultrasonic treatment. The contaminated instruments treated by chemical decontamination for 5 min in the decontamination tank (Protocol A) were therefore immersed in the ultrasonic bath containing the same disinfection solution at 40 °C. The treatment was maintained for 30 min. Samples were collected and analysed at 0, 5, 15, 30 min.

Bactericidal activity test. The number of living and dead bacteria, before and after the three treatments indicated in the A, B, C protocols, was determined either by plate counting or by fluorescence microscopy.

Plate counts. Aliquots (1 ml) of samples were diluted in M9 Mineral Medium and appropriate dilutions were placed on plate agar containing LB medium. The samples were incubated at 30 °C for 24 h. The number of viable bacteria (CFU/ml) were determined at the different times of treatment.

Fluorescence microscopy. The counts of total bacteria were performed in the presence of the fluorochromes SYBR Green I and propidium iodide, emitting light after excitation in the green and red fluorescence, respectively. SYBR Green is a molecule, which stains all the cells, either dead or alive. Conversely, propidium iodide can penetrate only cells with a damaged membrane. It is therefore possible to distinguish the living (green) cells from the dead (red) ones. For cell staining, 10 µl of each fluorochrome in 1 ml of culture sample were utilised. For each treatment, several samples were analysed by an epifluorescent microscope to identify and count the differently stained bacteria. The observation of the samples was performed with an Axiolab HB050 Zeiss, equipped with a high-pressure mercury bulb and a filter set type UV-2A EX 330-380 and G2AEX510-560.

Virucidal activity test. Virucidal activity was evaluated by the reduction of at least 99.99% infectivity (4 logs) of test viruses after treatments as in A, B, and C protocols.

At the end of each protocol the instruments were “washed” in 10 ml of DMEM 10% CS for 5 min and the residual virus in the medium titred on confluent VERO cells. As a control, the virus present on the instruments immediately after contamination was also titred.

RESULTS

Sets of dental instruments were contaminated with a mixed bacterial culture containing *Enterococcus faecium*, *Staphylococcus* sp., *Pseudomonas aeruginosa*, *Mycobacterium* sp., and *Escherichia coli*, or the endospore-forming *Bacillus subtilis*. Similarly, identical sets of dental devices were contaminated with
the RNA-virus Polio1 or the DNA-virus HHV-1. The dental instruments were then immersed in the bacterial suspension for 1 h or in the viral suspension for only 5 min to minimise the spontaneous viral inactivation. The contaminated instruments were then submitted to three different cleaning/disinfection procedures called Protocol A, B, and C as described in Methods.

Chemical decontamination without ultrasonic treatment (Protocol A)
Results of bacterial number after decontamination are reported in Table 1. Data show that the total bacterial number decreased of about 3 logs after 5 min of treatment and, after 15 min, the complete absence of living cells was observed. The titration of Poliovirus1 and HHV-1 before and after treatment was done in triplicate on confluent VERO cells. The effect of chemical disinfection on the viruses present on contaminated instruments parallels the results obtained with bacteria. In particular, a uniform 3-logs decrease was observed after 5 min treatment and a complete virus inactivation after 15 min.

Ultrasonic treatment (Protocol B)
The results of the effect of sonication on the bacterial and viral population in the absence of a preliminary disinfection procedure are reported in Table 2. Sonication alone can only partially reduce the microbial population from 10^6 to 10^2 CFU/ml, thus suggesting the need of a chemical disinfectant to support and complement the physical action of sonication in killing of resistant microorganisms.

The ultrasound treatment alone resulted however very effective to inactivate both RNA (Polio 1) and DNA (HHV-1) containing viruses. In fact, the virus titer dropped by 3-logs after 5 min, and was reduced to zero after 15 min of sonication.

Chemical decontamination combined with ultrasonic treatment (Protocol C)
The results obtained by protocols A and B suggested a subsequent evaluation of the combined effect of chemical and ultrasound treatments. The result of the combined chemical/physical treatment on bacteria and viruses survival is reported in Table 3.

The enumeration of living microorganisms, after 5 min sonication of the contaminated instruments, revealed the complete inactivation of the bacterial mixture and Bacillus subtilis.

Moreover we could observe that when the experiments were performed with cultures of Bacillus subtilis in which most cells were spores, the contribution of ultrasound treatment to their inactivation was important. In this case, as shown in Table 2, a relevant part (8×10^3 CFU/ml) of bacteria remained viable in the solution still after 15 min, and only the effect of the ultrasonic bath determined their complete inactivation (Table 3, Fig. 1). A control experiment with cells incubated after this treatment was also performed to exclude that spores could become vegetative forms (data not shown).

The procedure outlined in Protocol C showed high efficacy on instruments contaminated by viruses. A 1-log reduction after 5 min and a complete sterilisation after 15 min were observed with dental instruments carrying the low but significant amount of virus left from the disinfection procedure.
TABLE 1 – Efficacy of chemical disinfection on bacterial and viral population (Protocol A)

<table>
<thead>
<tr>
<th>Bacterial number (CFU/ml)</th>
<th>Treatment time (min)</th>
<th>0</th>
<th>5</th>
<th>15</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. C.</td>
<td>F. M.</td>
<td>P. C.</td>
<td>F. M.</td>
<td>P. C.</td>
<td>F. M.</td>
</tr>
<tr>
<td>Green</td>
<td>Red</td>
<td>Green</td>
<td>Red</td>
<td>Green</td>
<td>Red</td>
</tr>
<tr>
<td>Bacterial mixture</td>
<td>1×10^6</td>
<td>1×10^6</td>
<td>0</td>
<td>2×10^3</td>
<td>1×10^3</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>1×10^6</td>
<td>1×10^6</td>
<td>0</td>
<td>1×10^6</td>
<td>1×10^6</td>
</tr>
</tbody>
</table>

Virus titer (PFU/ml)

<table>
<thead>
<tr>
<th>Treatment time (min)</th>
<th>0</th>
<th>5</th>
<th>15</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poliovirus 1</td>
<td>4.25×10^5</td>
<td>1×10^2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HHV-1</td>
<td>2.2×10^6</td>
<td>1×10^3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

P.C. = Plate Counting; §F.M. = Fluorescence Microscopy.
<table>
<thead>
<tr>
<th>Treatment time (min)</th>
<th>0</th>
<th>5</th>
<th>15</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P. C.</td>
<td>F. M.</td>
<td>P. C.</td>
<td>F. M.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>Red</td>
<td>Green</td>
<td>Red</td>
</tr>
<tr>
<td>Microbial mixture</td>
<td>9 x 10^6</td>
<td>9 x 10^6</td>
<td>0</td>
<td>9 x 10^3</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>1 x 10^6</td>
<td>1 x 10^6</td>
<td>0</td>
<td>1 x 10^3</td>
</tr>
<tr>
<td>Poliovirus 1</td>
<td>4.25 x 10^5</td>
<td>2 x 10^2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HHV-1</td>
<td>2.2 x 10^5</td>
<td>2.5 x 10^3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*P.C. = Plate Counting; F.M. = Fluorescence Microscopy.
TABLE 3 – Efficacy of combined chemical and ultrasound treatment on bacterial and viral population (Protocol C)

<table>
<thead>
<tr>
<th>Treatment time (min)</th>
<th>Initial bacterial number</th>
<th>0^#</th>
<th>5^#</th>
<th>15^#</th>
<th>30^#</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Green</td>
<td>Red</td>
<td>Green</td>
<td>Red</td>
<td>Green</td>
</tr>
<tr>
<td>Microbial mixture</td>
<td>1 x 10^6 1 x 10^6 0</td>
<td>2 x 10^3 1 x 10^3 9 x 10^5 0</td>
<td>0</td>
<td>1 x 10^6 0</td>
<td>0</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>1 x 10^6 1 x 10^6 0</td>
<td>1 x 10^6 1 x 10^6 0</td>
<td>0</td>
<td>8 x 10^5 0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment time (min)</th>
<th>Initial virus number</th>
<th>0</th>
<th>5</th>
<th>15</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poliovirus 1</td>
<td>4.25 x 10^5</td>
<td>1 x 10^2</td>
<td>1.7 x 10^1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HHV-1</td>
<td>2.2 x 10^6</td>
<td>1 x 10^3</td>
<td>1.1 x 10^1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*P.C. = Plate Counting; §F.M. = Fluorescence Microscopy; ^Time (min) after 5 min chemical disinfection.
FIG. 1 – Fluorescence microscopy showing living (green) and dead (red) bacteria present in the solution of contaminated instruments before (A) and after (B) 15 min of treatment with Protocol C.

DISCUSSION

Ultrasounds have been utilised for long time as an effective means to clean surgical instruments (Weller et al., 1980) and, in particular, dental devices (Walmsley, 1998) before sterilisation. Although the virucidal effect of high frequency sound waves on tobacco mosaic virus was previously shown (Oster et al., 1947), our results demonstrated that the disinfectant solution we tested is able to inactivate different bacteria as well as non-enveloped RNA and enveloped DNA viruses after 15 min. Particularly resistant bacteria as *B. subtilis* need more time or a different treatment because Protocol A is unable to kill viruses or microbial cells in less than 15 min. Treatment with ultrasounds with or without the chemical disinfectant SONICA® CL 4% in the cleaning solution (Protocol B) was equally efficient with viruses although requesting more time (over 30 min) to completely inactivate bacteria. Conversely, the combined procedure (Protocol C) of a disinfectant and ultrasounds completely inactivates viruses and bacteria after 15 min of treatment.

On the basis of these results, we demonstrated that this methodology, based on the innovative Sweep System Technology delivering a homogeneous frequency of 43-45 kHz by two separate transducers, coupled to the use of a mild chemical disinfectant at 40 °C, was able to inactivate bacteria and viruses from experimentally contaminated instruments and confirm the general effectiveness of ultrasounds in cleaning dental instruments (Cafruny et al., 1995; Bettner et al., 1998).

Protocol C, which we found to be the only one able to sterilise in less than 15 min the contaminated dental devices, should therefore be utilised by all dental practitioners during their clinical interventions on patients of unknown case history.

Acknowledgments
We thank Soltec® Company (Milano, Italy) for providing the SONICA 2200EP ultrasonic cleaner and SONICA® CL 4% disinfectant.

REFERENCES
